Advanced plots: boxplots, heatmaps, treemaps, scatterplot matrices in R

Creating advanced plots in R can greatly enhance data visualization. Here are some examples of how to create advanced plots in R:

1. Boxplot:
You can use the `boxplot()` function to create a boxplot of a numeric variable. For example:

x <- c(1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5)
boxplot(x)   # Create a boxplot of x

2. Heatmap:
You can use the `heatmap()` function or the `ggplot2` package to create a heatmap of a matrix. For example:

x <- matrix(runif(100), ncol=10)
heatmap(x)   # Create a heatmap of x

Alternatively, using `ggplot2`:

library(ggplot2)
library(reshape2)

x <- matrix(runif(100), ncol=10)
df <- melt(x)
ggplot(df, aes(x=Var2, y=Var1, fill=value)) + geom_tile()   # Create a heatmap of x using ggplot2

3. Treemap:
You can use the `treemap()` function or the `ggplot2` package with the `treemapify` package to create a treemap of a hierarchical dataset. For example:

library(treemap)

data(GNI2014)
treemap(GNI2014)   # Create a treemap of the GNI2014 dataset

Alternatively, using `ggplot2` and `treemapify`:

library(ggplot2)
library(treemapify)

data(GNI2014)
df <- as.data.frame(GNI2014) treemapify(df, path=c("continent", "iso3"), vSize="population", vColor="GNI") + geom_treemap() # Create a treemap of the GNI2014 dataset using ggplot2 and treemapify


4. Scatterplot matrix:
You can use the `pairs()` function to create a scatterplot matrix of multiple variables. For example:

df <- data.frame(x1=rnorm(100), x2=rnorm(100), x3=rnorm(100)) pairs(df) # Create a scatterplot matrix of x1, x2, and x3


Alternatively, using `ggplot2`:

library(ggplot2)
library(reshape2)

df <- data.frame(x1=rnorm(100), x2=rnorm(100), x3=rnorm(100)) df_melted <- melt(df) ggplot(df_melted, aes(x=variable, y=value)) + geom_point() + facet_grid(rows="variable", cols="variable") # Create a scatterplot matrix of x1, x2, and x3 using ggplot2